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Recent data have shown that an elevated plasma
level of the amino acid homocysteine (Hcy) is a

common, independent, easily modifiable and possi-

bly causal risk factor for cardiovascular disease

(CVD) which may be of equal importance to

hypercholesterolemia, hypertension and smoking.
This paper reviews the biochemical, clinical, epide-

miological and experimental data underlying this

conclusion and is critically questioning whether
elevated tHcy is a causal factor.

Keywords: homocysteine, atherosclerosis, cardiovas-

cular disease, pathogenesis.

History

The sulphur amino acid homocysteine (Hcy) was
first described by Butz and du Vigneaud in 1932 [1].

One year later, a case report in the New England

Journal of Medicine described an 8-year-old men-
tally retarded boy who died from a massive

infarction of the right cerebral hemisphere and

atherothrombosis of the internal carotid arteries [2].
This is believed to be the first description of

homocystinuria. More than 30 years later the

brother and two nieces of the patient were then
confirmed to have this rare metabolic error char-

acterized by severely elevated Hcy levels [3].

The biochemical finding of homocystinuria was
first described in mentally retarded children in 1962

[4, 5]. Only two years later, Mudd et al. reported
that the metabolic defect was due to cystathionine

b-synthase (CBS) deficiency. Later, it was recognized

that defects in other enzymes, including methionine

synthase and methylenetetrahydrofolate reductase

(MTHFR) also cause homocystinuria [6].
Clinical and pathological observations in patients

with homocystinuria suggested a pathogenic role of

elevated Hcy: First, the homocystinuria patients
have a high incidence of premature cardiovascular

episodes, in adolescence and even in childhood.

Secondly, the vascular lesions occur independently
of the site of the metabolic lesion, suggesting that

Hcy itself and not a remote metabolic defect is

responsible for the CVD [3, 6±10]. Based on these
observations, McCully in 1969 presented his homo-

cysteine theory of atherosclerosis [8, 11], suggest-

ing that an elevated Hcy level may be a risk factor
for CVD in the general population.

In 1976, the first clinical study supporting this

theory was published by Wilcken and Wilcken who
found that patients with angiographically verified

coronary artery disease (CAD) had higher levels of

Hcy-cysteine mixed disulphide after a methionine
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load than the controls [12]. Since then, about 100

clinical and epidemiological studies on the relation-

ship between Hcy and occlusive disease in the
coronary, cerebral and peripheral arteries, and in

the veins have been published. These studies

demonstrate that an elevated Hcy level is a strong
risk factor for CVD [13±16].

Biochemistry

Metabolism

The sulphur amino acid Hcy is not a dietary

constituent and is not incorporated into proteins

[6] but is exclusively formed as an intermediary
product of methionine metabolism (Fig. 1). Through

the action of methionine adenosyltransferase (E.C.

2.5.1.6), methionine is converted to S-adenosyl-
methionine, which is the major biological methyl

donor required for numerous cellular processes,
including the formation of creatinine and methyla-

tion of phospholipids [6, 17±20]. These reactions

are catalysed by various methyltransferases that
demethylate S-adenosylmethionine to S-adenosylho-

mocysteine, which is the immediate precursor of

Hcy [6].
Once Hcy is formed, it may be salvaged to

methionine by methylation, or degraded to cysteine

by transsulphuration. Remethylation to methionine
is in most tissues catalysed by the ubiquitous

enzyme, methionine synthase (E.C. 2.1.1.13). This

enzyme uses vitamin B12 as cofactor, and 5-

methyltetrahydrofolate as methyl donor. 5-Methyl-
tetrahydrofolate is formed by the vitamin B2-

dependent enzyme MTHFR (E.C.1.1.99.15). Hcy

may also be converted to methionine by betaine-
homocysteine methyltransferase (E.C. 2.1.1.5) using

betaine as a methyl donor. This reaction is probably

confined to the liver and possibly the kidney [6, 21].
Two vitamin B6-dependent enzymes are involved

in the transsulphuration pathway. The enzyme CBS

(E.C.4.2.1.22) first condenses Hcy with serine to
form cystathionine, which is then cleaved into

cysteine and a-ketobutyrate by cystathionine

g2lyase (E.C.4.4.1.1) [6, 22]. Cysteine may be
utilized in the synthesis of proteins or as a precursor

of the antioxidant glutathione. The transsulphura-

tion of Hcy to cysteine is irreversible, and therefore
directs Hcy to catabolism via cysteine to sulphates as

the final product.

Under normal metabolic circumstances, there is a
strict balance between Hcy formation and elimina-

tion. Usually about 50% of the Hcy formed is

remethylated to methionine. When protein or
methionine intake is in excess, a larger proportion

is catabolized by the transsulphuration pathway

[19, 22]. If there is an increased formation of Hcy
relative to its consumption, Hcy is excreted from the

cells. This can be detected as an increased level of
Hcy in plasma/serum or in the urine [23].
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Fig. 1 Homocysteine metabolism:

AdoMet; S-adenosyl methionine,

AdoHcy; S-adenosyl homocysteine,
THF; tetrahydrofolate, CBS;

cystathionine b-synthase, CL;

cystathionine g-lyase, MS;
methionine synthase, MTHFR;

methylenetetrahydrofolate

reductase, B6; vitamin B6, B12;

vitamin B12, B2; vitamin B2.



Homocysteine in blood

The Hcy concentration in plasma or serum is about

10 mmol L21 in adults. However, Hcy exists in

various forms (Figs 2 and 3); only trace amounts
(,1%) are in the reduced (sulfhydryl) form, the

remaining part is oxidized and exists as various

disulphides [24]. About 70% is bound to albumin
(via a disulphide bond), whereas the remaining 30%

exists as free disulphides, mostly as a Hcy-cysteine

mixed disulphide [6]. After blood sampling, there is a
rapid redistribution between the free and protein-

bound fractions of Hcy [25]. This interconversion of

the different Hcy species explains the analytical
problems that were overcome by the introduction of

new methods for total Hcy (tHcy) determination

during the 1980s [23].

Terminology

Homocysteine refers to a specific chemical com-

pound; it is an amino acid with a free sulfhydryl

group (Fig. 2). The homocysteine symmetric dis-
ulphide is termed homocystine, and the term

homocystinuria (see below) denotes homocystine

in urine and reflects the way in which this disease
was originally identified. The other oxidized forms of

homocysteine are referred to as homocysteine mixed

disulphides (Fig. 3). The abbreviation Hcy is usually
used for both homocysteine and its oxidized species.

Total homocysteine, abbreviated tHcy, is a metho-

dological term and refers to the concentration of
homocysteine obtained after plasma/serum has been

treated with a reductant which converts the free and

bound disulphides into their respective sulfhydryl
compounds.

Hyperhomocysteinemia refers to an elevated tHcy

concentration in blood, and has been divided into
mild (15±30 mmol L21), intermediate (30±

100 mmol L21) and severe (. 100 mmol L21) hy-
perhomocysteinemia [26]. Homocystinuria is now a

term exclusively used for the inborn errors of
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Fig. 2 Structural formulas of

homocysteine and homocystine.

Homocysteine is an amino acid

with a free sulfhydryl (SH) group,
whereas homocystine is the

symmetric disulphide of two

homocysteine molecules.

Fig. 3 The various forms of

homocysteine (Hcy) in blood.



metabolism leading to severe hyperhomocysteine-

mia. Because Hcy is always present in blood, the

term homocysteinemia is not clinically useful and
should be abandoned.

Homocysteine determination

Measurement. A comprehensive review of the

history and principles underlying the various

methods for Hcy or tHcy determination has been
published [23]. The initial methods were based on

qualitative tests, such as a positive nitroprusside

reaction, or the use of amino acid analyses devel-
oped in the late 1950s [27]. In the mid-70 s, these

methods were replaced by second-generation amino

acid analysers, which for the first time allowed the
determination of the Hcy-cysteine level in plasma or

serum from healthy subjects. Methods for protein

bound Hcy [28] and tHcy [25] determination were
introduced some few years later and greatly

facilitated clinical research on tHcy. The common

principle for all tHcy methods is the use of a
reductant in order to cleave the disulphide bonds

between Hcy and proteins or other thiols, thereby

forming reduced homocysteine, which can be
quantified directly or after derivatization. The

majority of the assays are based on chromatographic

techniques; high performance liquid chromatogra-
phy (HPLC) with fluorescence detection is the

method most commonly used [23]. The development
of a rapid and fully automated HPLC method [29,

30] was a prerequisite for performance of the large-

scale clinical and epidemiological Hcy studies in
Norway [31, 32].

Factors that influence tHcy determination. The

procedures for collection and processing of the blood

sample are critical steps in the determination of tHcy
[30, 33].

It is generally recommended that subjects should

be fasting. In healthy subjects, the influence of food

intake is, however, limited [33±36]; a protein-rich
meal may increase the level by 10±15%, reaching a

maximum 6±8 h after food intake [36]. The posture

of the subject during blood collection should also be
taken into account. Albumin, which binds the major

portion of Hcy in plasma, is lower in the recumbent
compared to the upright position [37]. The problem

might be relevant in case-control studies where the

patients may be in bed, whereas the controls are

usually called in, and the blood collected in the

sitting position.

After blood sampling, there is a time- and
temperature-dependent release of Hcy from blood

cells [38]. This leads to an artificial increase in

plasma/serum tHcy concentration which amounts
to 15±20% per hour at room temperature [23]. This

artifact can be prevented by keeping the whole blood

on ice or by adding a stabilizer such as sodium
fluoride [33] or acidic citrate [39]. Once separated

from the blood cells, the plasma tHcy concentration

is stable for at least 4 days at room temperature, for
2 weeks at 0±2 8C, and for months or years when

frozen at ±20 8C [23, 40±42].

The within-person or biological variability of tHcy
has been tested in several studies, and the tHcy

levels show minor variation during repetitive

analyses for 24 h [35], weeks [43], months [35,
43±45] or a few years [43]. The intraindividual

biological coefficient of variation (CV) has been

estimated to be about 9% [44, 45]. In addition, the
reliability coefficient, which reflects the ability to

correctly classify a subject with respect to its short-

term average concentration by a single measure-
ment, is slightly higher for tHcy (0.88) than for total

cholesterol (0.85) [45] and most other clinical

chemistry analytes [46]. These data therefore
suggest that tHcy concentration of an individual is

relatively constant, and can be determined by a
single measurement when the sample handling is

standardized and the method has an acceptable

analytical CV.

Methionine-loading test. The concentration of tHcy

in plasma or serum is usually between 5 and

15 mmol L21 in adult populations [23]. However,
tHcy is increased (2, 4 or 6 h) after the intake of a

high dose of methionine (0.1 g kg21 or 3.8 g m22),

hence, stressing the metabolic pathways. This so-
called methionine loading test was originally de-

signed to detect heterozygosity for CBS deficiency

[47±52], but later studies have demonstrated that
an abnormal response to methionine is common in

the general population, and probably cannot be fully

explained by mutations in the CBS [53]. The fact
that up to 40% of subjects with elevated postload

tHcy have normal fasting levels [54±56], suggests
that this test provides information beyond that

obtained by determining fasting tHcy level. The

physiological corollary of the methionine loading is
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uncertain, but it may mimic the response to dietary

methionine intake. The procedure is cumbersome

and difficult to apply in large-scale epidemiological
studies.

Determinants of total homocysteine
concentration

The tHcy level is a function of a complex interaction

between multiple genetic and environmental factors

[6, 57].

Genetic determinants

Discovery of homocystinuria due to CBS deficiency

in 1962 [4, 5] initiated the focus on Hcy as a

possible pathogenic factor. These patients have
extremely high levels of tHcy in plasma (300±

400 mmol L21) and urine [58]. The clinical condi-

tion is characterized by ectopia lentis, osteoporosis,
skeletal anomalies, mental retardation and a high

incidence of premature vascular episodes [3±7, 9,

59, 60]. CBS deficiency, an autosomal recessive
disorder [6, 61], is the most common cause of

homocystinuria [6, 62, 63]. However, MTHFR

deficiency [64, 65] and methionine synthase
deficiency [66] also lead to severe hyperhomocys-

teinemia (.100 mmol L21) and thromboembolic

vascular disease even in childhood [10].
The genes encoding for CBS [67], MTHFR [68],

methionine synthase [66, 69], as well as betaine-

homocysteine methyltransferase [70], have now
been cloned. In patients with mutations of the CBS

gene, more than 50 different pathogenic mutations

that have been found [53], and these can partly
explain ethnic variations and differences in pheno-

typic expression amongst patients with CBS defi-

ciency [53, 63, 71, 72].
It was discovered early that obligate heterozygotes

for CBS deficiency usually have a normal fasting

level of tHcy [49] but frequently respond to the
methionine loading test with an abnormal increase

in the tHcy concentration [6, 73]. Interestingly,

patients with Down syndrome have an additional
copy of the CBS gene and generally low tHcy levels,

and this condition has been regarded as an
atheroma-free model [74, 75].

A common polymorphism in the MTHFR gene

causes low activity and thermolability of the enzyme

and is associated with elevated tHcy. Thermolability

of MTHFR was first described by Kang et al. in 1988,

who also demonstrated that this enzyme variant
was commonly occurring in CVD patients [76, 77].

In 1995 it was recognized that thermolability was

due to a C to T substitution at position 677 of this
gene. Several studies have demonstrated that the

C677T polymorphism is associated with hyperho-

mocysteinemia in subjects with impaired folate
status [77±83]. The C677T allele frequency is high

(30±40%) in most populations, and about 10% of

the Caucasian population is homozygous, and
therefore at particularly high risk of developing

hyperhomocysteinemia. However, there is substan-

tial interethnic variation [84, 85]. In populations of
African descent [84, 86], Asian Indians (Refsum,

unpublished) or Canadian Inuit [87], the prevalence

is 0±2%, whereas it may be about 20% in Asians
[84] and even higher in Northern Italy [88]. This

difference may partly explain variable tHcy levels

according to ethnicity [23, 89±91].

Physiological determinants

Blood levels of tHcy are higher in men than in

women and increase with age [31, 92±99]. The

difference between the genders becomes apparent in
puberty [100] and is believed to be related to

hormonal factors, but also to lifestyle, diet and

vitamin status.
The tHcy concentration is decreased in normal

pregnancies [101] but higher levels are observed in

pregnancies complicated by recurrent spontaneous
abortions or abruptio placentae [102, 103]. The

level of tHcy is strongly related to renal function

[104]. Two different mechanisms may be involved.
First, in healthy subjects, the main source of Hcy is

the adenosylmethionine-dependent methylation of

guanidoacetate to form creatine and its anhydride
creatinine [6, 99]. Creatine/creatinine synthesis is

related to muscle-mass, and this may partly explain

the higher tHcy (and serum creatinine) levels in men
compared to women. Secondly, renal function plays

a central role for clearance of both creatinine and

Hcy [105±107]. Because the urinary excretion of
Hcy is low [25, 108], it has been suggested that an

extensive metabolism of Hcy, probably through
transsulphuration, takes place in the kidneys

[105, 109, 110]. Although this has recently been

contested [111], the normal physiological decline in
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renal function by age may to some extent explain

the increase in tHcy with age [99]. A recent study

including the GFR-marker cystatin C supports this
assumption, and that the sex difference in tHcy is at

least in part due to differences in creatinine synthesis

[112].

Nutritional determinants

The postprandial as well as long-term effect of

methionine intake from proteins has been investi-

gated, but probably only causes a marginal change
in the tHcy level [33±36, 54, 113]. In contrast,

dietary intakes [114±117] or plasma levels (Fig. 4)

of folate and vitamin B12 are inversely related to
tHcy concentration. Deficiencies of these vitamins

may cause a moderate or even severe hyperhomo-

cysteinemia, and an increased tHcy level is a
sensitive marker of disturbed function of both folate

and vitamin B12 [118]. Intake or plasma levels of

vitamin B6 may be weakly related to basal tHcy
[115, 119]. However, most studies find that

vitamin B6 deficiency is associated with normal

fasting from tHcy, but with a marked elevation in

tHcy after methionine loading [6, 26, 57, 120,

121]. Insufficient dietary intake of the vitamins

involved in Hcy metabolism seems to be common in
Western countries, especially amongst the elderly

[115, 119, 122].

Lifestyle

The influence of various aspects of lifestyle on the
tHcy levels has been studied in the Hordaland

Homocysteine Study. Data from this large-scale

population based study show that smoking and
heavy coffee consumption are associated with

elevated tHcy levels, whereas physical activity is

associated with low tHcy [31, 117, 123]. A
moderate alcohol consumption may be associated

with reduced tHcy levels [124], whereas a chronic

high alcohol consumption is associated with ele-
vated tHcy [124±126], possibly via impaired folate

or vitamin B6 function [126±129].

Drugs

A number of drugs influence tHcy concentration by
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Fig. 4 Serum levels of folate and vitamin B12 vs. plasma total homocysteine in 587 patients with coronary artery disease (CAD) [32] and

329 healthy subjects [117, 123]. The relationships between the vitamins and tHcy levels are similar in the two populations, although

slightly stronger dose±response relationships are observed amongst the healthy individuals than amongst the patients. In both populations,
folate levels show a substantially stronger relationship to tHcy than vitamin B12; whereas folate demonstrates a dose±response relationship

to tHcy even at high levels, the relationship to tHcy of vitamin B12 is more uncertain at the highest vitamin B12 levels. Crude correlations

are presented.



interfering with the Hcy metabolism. Folate antago-

nists such as methotrexate and the vitamin B12

antagonist nitrous oxide may lead to a marked tHcy
elevation [130]. In renal transplant recipients,

treatment with cyclosporin causes a moderate

increase in tHcy [131]. The antidiabetic drug
metformin may elevate tHcy by affecting folate as

well as vitamin B12 levels [132, 133], and tHcy is

elevated in epileptics treated with anticonvulsant
drugs probably because of interference with folate

polyglutamation and retention [134].

Amongst hypolipidemic drugs, it has been known
for several years that a combination of colestipol and

niacin may elevate tHcy [135], and the association

was primarily related to the folate-antagonistic effect
of cholestyramine [135]. This was later confirmed in

a study on hyperlipidemic children [136]. The

C677T mutation in the MTHFR gene seems to
predispose to this effect [137]. Niacin may also

induce hyperhomocysteinemia, but by affecting

vitamin B6 status [138].
Theofyllin [139] and azaribine [140] increase

tHcy by inhibiting vitamin B6 function. Notably,

azaribine, a drug previously used in the treatment of
psoriasis, was related to an increased incidence of

thromboembolism, and was therefore prohibited by

the Food and Drug Administration in 1976 [140±
142].

L-dopa becomes methylated by adenosylmethio-
nine and may therefore elevate tHcy by enhance-

ment of Hcy production [143, 144]. Several

hormone related drugs may influence the tHcy level,
but the mechanisms have not been elucidated. In

women, tHcy levels are lowered by tamoxifen [145,

146], possibly by hormone replacement therapy
[147±149], and some oral contraceptives [150±

152], and increased by androgen administration

[153]. In men, oestrogen plus antiandrogen admin-
istration has a substantial tHcy lowering effect

[153].

Aminothiols such as penicillamin [154, 155],
acetylcysteine [156] and ifosfamide/mesna [157]

reduce the plasma tHcy level, probably by increasing

renal clearance or by displacing Hcy from the
protein binding sites [154, 155]. Such drugs have

been suggested for the treatment of homocystinuria

[154, 155]. In patients with moderately elevated
tHcy levels, aminothiols are not, however, the drugs

of choice since long-term therapy with these agents

may have side-effects related to disulphide exchange

and redox reactions. Vitamin therapy seems to be a

more effective, safer and less expensive alternative.

Various diseases

Several clinical conditions are associated with
elevated tHcy levels. This can usually be explained

by low vitamin status, impaired enzyme function or

renal failure.
Hyperproliferative disorders, such as acute lym-

phoblastic leukaemia [158] and severe psoriasis

[24, 159±161] are associated with elevated tHcy
levels. This is probably explained by an increased

Hcy export from the proliferating cells.

Recently, an increased prevalence of hyperhomo-
cysteinemia has been reported amongst patients

with hypothyroidism [162]. Acute hyperinsulinemia

is associated with a decrease in tHcy concentration
in normal subjects [163]. In diabetes mellitus,

elevated tHcy is observed concomitant with the

onset of nephropathy [164], which occurs more
frequently amongst those with early onset of the

disease and with a poor metabolic control [165].

Nephropathy is predicted by microalbuminuria
[166], which may be a reliable index of vascular

damage both in diabetic and other patient groups

[167]. Recent studies show that microalbuminuria
is strongly related to plasma tHcy in diabetic patients

[168±170], although the relation may be indepen-

dent of the diabetes per se [170].

Vitamin therapy

Hyperhomocysteinemia, as a risk factor for CVD,

represents a strong incentive for investigating folic

acid, vitamin B12 and B6, and possibly also betaine,
as tHcy lowering therapy. Based on the role of these

vitamins in Hcy metabolism (Fig. 1), a differential

effect on tHcy levels in relation to fasting and
methionine intake is expected. Supplementation

with folic acid lowers high fasting as well as

postmethionine load tHcy in most subjects, whereas
vitamin B12 only has an effect in subjects with

vitamin B12 deficiency [77, 171±173]. Vitamin B6,

even in very high doses, does not affect fasting tHcy
levels, but usually reduces abnormal elevation in

tHcy after a methionine load. The effect of betaine is
less known, but may be effective in some patients

with elevated postload tHcy levels [174, 175].

The marked tHcy lowering effect of high doses of
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folic acid (5 mg day21) in the absence of folate

deficiency was first reported by BrattstroÈm et al. in

1988 [176]. This and later studies [172, 174,
177±179] have demonstrated that 0.5±10 mg folic

acid, alone or in combinations, reduces fasting as

well as postload tHcy levels, usually by about 25±
35%. In contrast to vitamin B6, vitamin B12 has a

small additional effect, observed in vascular patients

as well as in healthy subjects, and it is most
pronounced in subjects with hyperhomocysteinemia

[179].

In subjects with markedly elevated tHcy
($40 mmol L21) and without overt vitamin B12

deficiency, a daily supplement of 200 mg folic acid

led to a normal tHcy level in 70% of the subjects
whereas 5 mg day21 was effective amongst the

remainder in this study. Most hyperhomocysteine-

mic individuals were homozygous for the C677T
mutation of the MTHFR gene [82]. The question of

the folic acid responsiveness of subjects with the

C677T genotype was elaborated further in a recent
study demonstrating that these subjects were more

responsive than the CC subjects to the tHcy-lowering

effects of 1±2 mg folic acid [180].
The effect of low doses of folic acid has been

investigated in healthy subjects with normal tHcy

levels. Doses of 0.3±0.4 mg day21 seem sufficient to
maintain low or normal tHcy in most subjects [181,

182]. The minimal dose required probably depends
on the individual's uptake, utilization and stores of

folate. Thus, amongst the subjects in the lowest

tertile for tHcy, a daily folic acid dose up to 400 mg
induced a nonsignificant reduction in the tHcy level

(from 7.1 to 6.4 mmol L21). Individuals with a tHcy

level in the two upper tertiles responded to a 100-mg
folic acid per day with some reduction in the tHcy

level, and a further reduction was observed when

the dose was increased to 200 mg and 400 mg
[183].

The possible tHcy lowering effects of other

vitamins have been tested in subjects with mildly
elevated tHcy, but treatment with the antioxidant

vitamins ascorbic acid, a-tocopherol or b-carotene

did not lower the tHcy levels [184].

Cardiovascular disease

Homocystinuria

Biological plausibility of Hcy as an atherothrombotic

agent is derived from the clinical presentation of

patients with homocystinuria characterized by

severely elevated tHcy. Untreated, 50% of these
patients suffer a thromboembolic event (half of

which are venous thromboembolic events), and

20% die before the age of 30 years [6, 9]. On
autopsy, findings include arteriosclerotic lesions in

large and medium-sized arteries, arterial and venous

thrombosis and multiple infarctions in different
organs. The microscopic findings differ from the

atheromatous changes in patients with hyperlipide-

mia, and include loosening and fragmentation of the
internal elastic lamina, intimal hyperplasia and

narrowing of the arterial lumen [3, 6, 57]. This

difference from hyperlipidemia is also demonstrated
in vivo; ultrasound assessed carotid intima-media

thickness and blood flow velocity of middle cerebral

arteries are normal in young patients with homo-
cystinuria but clearly pathologic in familial hy-

percholesterolemia [185].

Arterial disease

Since the first study by Wilcken and Wilcken in

1976 [12], the results from about 100 clinical and

epidemiological studies have shown that even a mild
or moderate elevation of tHcy is associated with an

increased risk of CVD [13].

Several pooled analyses or meta-analyses based
primarily on retrospective studies have been per-

formed. Ueland et al. summarized in 1992 the

results of 17 studies including approximately 1500
CVD patients and 1400 controls [57]. The findings

were consistent across the various forms of CVD,

and showed that the fasting tHcy concentration was
32% higher amongst patients. A methionine load

test had been performed in some of the studies, and

an abnormal postload tHcy was detected in 24% of
the patients compared to only 2% of the controls.

In a report by Boers 2 years later, the analysis

was restricted to studies with postload Hcy determi-
nations [186]. Amongst the 750 CVD patients, mild

hyperhomocysteinemia was detected in 21% with

CAD, 24% with cerebrovascular disease and 32%
with peripheral vascular disease, compared to 2%

amongst 200 controls.
The meta-analysis by Boushey et al. in 1995

[187] was based on 24 retrospective and 3

prospective studies and included approximately
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4100 patients and a similar number of controls. In

this analysis, it was estimated that the relative risk

associated with a 5-mmol L21 increment in the tHcy
level, was 1.7 (95% CI, 1.5±1.9) for coronary heart

disease, 1.9 (95% CI, 1.6±2.3) for cerebrovascular

disease and even higher for peripheral artery
disease. It was further calculated that at least 10%

of the population's risk of CAD might be attributable

to tHcy.
Recently, Wald et al. summarized the results of

eight retrospective studies on tHcy and myocardial

infarction [188]. The combined odds for a 5-
mmol L21 increase in the tHcy level was 1.84

(95% CI, 152±2.23), which was reduced to 1.65 if

one study with an atypically high estimate was
excluded.

The relationship between CVD and tHcy was

studied in a large European case-control study of
800 cases and 750 controls [55]. Fasting as well as

postload tHcy concentrations were about 20%

higher in cases compared to controls, and similar
increases in risk was observed with elevation in any

of the two types of tHcy determinations. A particu-

larly high risk was found in subjects with increased
levels of both fasting and postload tHcy concentra-

tions. After adjustment for conventional risk factors,

the relative risk per 5-mmol L21 increment in fasting
tHcy level was 1.35 (95% CI, 1.2±1.6) for men and

1.42 (95% CI, 0.99±2.05) for women. Notably,
users of supplements containing folic acid, vitamin

B6 or vitamin B12 had a relative risk of 0.38 (95% CI,

0.2±0.7) compared with nonusers.
Cross-sectional studies using angiography or

ultrasound imaging have shown that tHcy is related

to the extent of atherosclerosis in the carotid [189±
192], peripheral [193] and coronary [32, 194±

200] arteries, and tHcy is related to graft vasculo-

pathy in transplant recipients [201].
A recent prospective study also shows that tHcy is

related to the progression of coronary atherosclero-

sis [202]. This may indicate that tHcy promotes the
atherosclerotic process. In addition, some prospec-

tive studies have shown that tHcy is related to the

acute thromboembolic event such as myocardial
infarction [203±206], stroke [207] or arterial

thrombosis [208]. However, plasma tHcy is low in

the acute phase of myocardial infarction [113, 209]
and stroke [210]. Because the major part of tHcy is

probably bound to albumin [6], this may be related

to lower albumin levels in bedfast patients [37,

211] or to other haemodynamic changes due to the

acute stress.

Mortality

Whereas most previous prospective investigations
have studied presumably healthy individuals, we

evaluated mortality in a cohort of 587 patients with

angiographically verified CAD in 1991±92 [32].
This distinction may explain the particularly strong

effect of tHcy amongst the patients. Five years follow

up revealed that, together with left ventricular
ejection fraction and creatinine levels, tHcy was

the strongest determinant of overall and cardiovas-

cular mortality. The difference in tHcy between
those who died and those who survived was 35% in

women and 20% in men (Table 1). Notably, plasma

tHcy was the strongest modifiable determinant of
mortality, and the mortality rate amongst indivi-

duals with tHcy ,9.0 mmol L21 was less than 1%

per year compared with 6% per year in those with
tHcy $15 mmol L21. In addition, the relation of

tHcy with mortality was present in subgroups

(Fig. 5).
We also found a strong relationship between tHcy

and previous myocardial infarction, which probably

explains the strong relationship between tHcy and
ejection fraction. Plasma tHcy was only weakly

related to the number of stenosed coronary arteries.

These observations suggest that elevated tHcy is
more strongly related to the acute event than to

atherosclerosis.
Two recent studies confirm our finding that tHcy

is an important risk factor for mortality in vascular

patients [212, 213]. In one of these studies of
patients with acute coronary syndromes, tHcy was

not related to short-term mortality within 1 month

but was related to mortality after a median follow up
time of 3.5 years [213]. Three recent community
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Table 1 Plasma total homocysteine (tHcy) levels according to

mortality amongst 587 patients with angiographically verified
coronary artery disease diagnosed at Haukeland University

Hospital 1991±92. Mean follow up was 4.6 years

Gender Number
Mortality
(%)

Survivors
tHcy (mm L21)

Deceased
tHcy (mm L21)

Women 109 10.1 10.9 14.7
Men 478 12.1 11.7 14.0



studies now show that plasma tHcy is a risk factor

for mortality, also in the general population [188,

214, 215].

Venous thromboembolic disease

Besides its relation with arterial occlusive disease,

there is recent evidence that hyperhomocysteinemia

is related to venous thrombosis as well [15, 216±

227]. This is perhaps the strongest evidence of a

thrombotic effect of elevated tHcy.

Cardiovascular risk factors

Like the overall risk for CVD, plasma tHcy is higher
in men than in women and increases with age. In

women, menopause may confer an increase in tHcy

beyond the effect of age [228]. There is an
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Fig. 5 Kaplan±Meier survival plots comparing patients with plasma total homocysteine (tHcy) above (bold line) and below (thin line)

15 mmol L21 in various subgroups of patients with coronary artery disease [32]. BP denotes blood pressure, MI myocardial infarction, ASA
acetylsalicylic acid, LVEF left ventricular ejection fraction, CABG coronary artery bypass grafting, and PTCA percutaneous transluminal

coronary angioplasty.



association between tHcy and several established

risk factors, including serum cholesterol [31, 229,

230], blood pressure [31, 92, 230], cigarette
smoking [31, 204, 231], diabetes mellitus [164]

and renal function [6, 25, 99, 105, 108, 232].

Notably, amongst patients with renal failure,
hyperhomocysteinemia is more prevalent than other

cardiovascular risk factors [104] and is associated

with increased risk of CVD [233]. Elevated tHcy may
confer a particularly high risk of CVD in diabetic

patients [170]. tHcy is also elevated in patients with

hypothyroidism [162], who have a high incidence of
CVD [234]. Furthermore, tHcy is related to fibrino-

gen [195], von Willebrand factor (vWF) [235±237]

and the intercellular adhesion molecule ICAM-1
[238]. The effect of high concentrations of tHcy on a

number of recognized risk factors related to hae-

mostasis, endothelial function and vascular smooth
muscle cells have been investigated in mechanistic

studies, and will be discussed below.

Recent studies indicate that elevated tHcy may
interact with some hereditary atherothrombotic

disorders [239, 240]. The factor V Leiden mutation,

which is the most frequent cause of familial venous
thrombosis, produces an increased risk of combined

venous and arterial thrombosis amongst patients

with homocystinuria [241]. Moderate hyperhomo-
cysteinemia, in some but not all studies, seems to

interact with the factor V Leiden mutation to
increase the risk of idiopathic venous thrombosis

beyond that already conferred by the Leiden

mutation [220, 222, 240, 242, 243].

Familial hyperhomocysteinemia

The plasma level of tHcy is frequently elevated in
subjects with a family history of CVD. This has been

documented through various studies on twins,
siblings, parents, children, grandchildren and rela-

tives of patients with CVD [93, 100, 244±248].

Even in young children aged 8±12 years, a higher
tHcy level is observed in those who reported

premature vascular death in a male relative [100].

Hence, the available data strongly suggest that the
plasma tHcy is a genetic trait, which may contribute

to a family history of CVD.

Experimental evidence and mechanisms

Elevated tHcy is related to numerous processes

involved in atherosclerosis or thrombosis. This

evidence relates both to in vitro and in vivo studies,

and elevated tHcy is associated with the develop-
ment of atherosclerosis in animals. There is no

unifying hypothesis on the molecular and cellular

mechanisms whereby Hcy might influence the
pathogenesis of CVD. An overview of the possible

mechanisms is presented.

Endothelium. Increasing evidence points to a
relationship between elevated Hcy and endothelial

dysfunction, which reflects an imbalance between

factors involved in vasomotor function, cellular
growth, coagulation or thrombolysis [249, 250].

A dysfunctional endothelium is an early marker of

atherosclerosis and thrombotic risk [251, 252], and
the vasomotor function improves during regression

of diet-induced atherosclerosis in monkeys [252,

253]. Umbilical endothelial cells from patients with
homocystinuria have normal endothelial function

markers [254]. However, a large series of investiga-

tions link elevated Hcy levels with injury and
dysfunction of the endothelium, and a direct

pathophysiological response to Hcy is therefore

implied [254].

Endothelium and coagulation, in vitro studies. The
vascular endothelium has a vital function in

regulating the balance between pro-and anticoagu-

lant factors [255, 256], and several of these factors
have been used as markers of endothelium function.

Studies with cultured endothelial cells show that

elevated Hcy may activate coagulation factor V
[257], inhibit the binding of tissue plasminogen

activator to endothelial cells [258, 259] by

hampering the binding to annexin II [259], redu-
cing the thrombomodulin-dependent activation of

protein C [260±262], suppressing the expression of

anticoagulant heparan sulphate [263], stimulating
the expression of procoagulant tissue factor [264],

and decreasing the production of the two important

vasorelaxant and antiaggregatory substances, nitric
oxide [265] and prostacyclin [266±268]. These

results indicate that elevated tHcy may modulate
the endothelium in a way that promotes thrombosis.

One study indicates an opposite effect by demon-

strating in vitro inhibition of vWF production [269],
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but this finding has been contested in later in vivo

studies [235, 236].

Endothelium and coagulation, in vivo studies. Diet-
induced hyperhomocysteinemia is associated with

altered levels of endothelial markers in animals.

Thus, elevated levels of vWF and a concomitant
decrease in angiotensin converting enzyme levels

have been observed in hyperhomocysteinemic rats

[236], whereas a decreased thrombomodulin-depen-
dent protein C activation was detected in the

thoracic aorta of monkeys [270].

In humans, elevated levels of tHcy, vWF and

thrombomodulin have been observed in patients
with peripheral artery disease, and the concentra-

tions decrease after 12 weeks daily treatment with

vitamin B6 plus folic acid [235]. However, a recent
study from this group suggests that elevated protein

markers are a consequence rather than a cause of

endothelial injury [237].

Endothelial-dependent vasodilatation. Endothelial

dysfunction also causes an imbalance between

relaxing and contracting forces [271], which is
ascertained by impaired vasomotor responses to

various stimuli [252]. A marked impairment of

endothelium-dependent vasodilatation in response
to acetylcholine and adenosine diphosphate (ADP)

has been demonstrated in hyperhomocysteinemic

monkeys [270], but normalization of plasma tHcy
by B-vitamins is insufficient to correct the vascular

dysfunction when the animals persist on a hyperch-

olesterolemic diet [272].

Impairment of flow-mediated endothelium-depen-

dent vasodilatation was demonstrated in children
with homocystinuria, by using high-resolution

ultrasound [273]. Similar observations have re-

cently been made in adults with moderately elevated
tHcy [274±277], and the endothelial dysfunction is

improved by folic acid supplementation [278].

Cytotoxic effect on endothelial cells. Elevated Hcy
has been associated with endothelial damage in

several in vivo [79±282] and in vitro studies [283±

288]. Although negative studies have been pub-
lished [289], the data may suggest a cytotoxic effect

of Hcy on the endothelial cells. This is supported by a
recent finding of a marked increase in circulating

endothelial cells (endothelemia) in vascular patients

subjected to methionine loading [290]. Other studies

indicate that Hcy directly inhibits the growth of such

cells [291, 292] as well as other cell types (HeLa cell

line) [293].

Inflammation. As an initial step in atherosclerosis,

endothelial injury involves inflammation and target-

ing of monocytes [294]. In the study by de Jong et al.
[237], tHcy was not associated with signs of

inflammation as evaluated by CRP. In contrast,

amongst the participants of the Physicians' Health
Study, plasma tHcy was significantly related to the

concentration of the intercellular adhesion molecule

ICAM-1 [238].

Oxidative stress. The underlying mechanisms for
the Hcy-associated endothelial injury and dysfunc-

tion are not established. In vivo studies indicate that

hyperhomocysteinemia induces oxidative stress
[295, 296]. This is further elaborated by in vitro

studies showing that oxygen and catalytic activity of

copper [284, 285, 287, 288], caeruloplasmin
[285] or hypoxanthine/xanthine [287] are required

to provoke the Hcy-induced cellular injury. The

response may be inhibited by the metal chelator,
desferal [288]. Because the concentration of the

copper containing protein caeruloplasmin is in-
creased in patients with homocystinuria [297],

copper-catalysed oxidation of Hcy with subsequent

hydrogen peroxide formation has been proposed to
be involved in the pathogenesis of CVD [284, 285].

The Hcy effects are also related to elevated levels

of the oxidation products thiobarbituric acid reactive

substances [288]. In addition, catalase, which
breaks down hydrogen peroxide, inhibits the re-

sponse [283, 285, 287, 288]. This indicates a

central role for hydrogen peroxide in mediating the
oxidative stress on endothelial cells [283, 285,

287, 288].

The observation that endothelium-independent
vasodilatation is not affected whereas endothelium-

dependent response is impaired in hyperhomocys-

teinemic humans, indicates that high tHcy reduces
endothelial nitric oxide activity [273±277]. Hcy

may decrease the bioavailability of nitric oxide by

forming S-nitroso-Hcy [265]. Another potential
mechanism is impaired function of the intracellular

antioxidant enzyme glutathione peroxidase, which
catalyses the reduction of hydrogen peroxide and

lipid peroxides [298, 299]. This effect of Hcy may be

specific since it is not provoked by cysteine [299].
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Prolonged Hcy administration may also reduce

intracellular levels of glutathione [293].

The initial response to elevated Hcy appears,
however, to be stimulation of intracellular produc-

tion of glutathione [299], nitric oxide or S-nitroso-

Hcy [300]. The scavenging potential of glutathione
and nitric oxide may be saturated after prolonged

Hcy elevation. This may lead to toxic effects of Hcy

by increased formation of hydrogen peroxide [293,
300±302] or other reactive oxygen species, such as

the superoxide radical or hydroxyl radical [265,

301, 303].

Peroxidation of lipids. The oxidation hypothesis of

atherosclerosis implies a causal role of oxidized
lipoproteins [304, 305]. Signs of increased low-

density lipoprotein (LDL) peroxidation by Hcy have

been demonstrated in cell-free systems [306, 307]
and in vivo in animals [308, 309]. However, other

in vivo and in vitro studies [310±313] refute these

findings, and one in vitro study indicates that
elevated Hcy may actually serve as an antioxidant

and protect LDL against oxidative modification

[314]. In contrast, a recent human study suggests
an increased lipid peroxidation by elevated tHcy

after methionine load [315].

Smooth muscle cells and collagen. Several investi-

gations have shown that hyperhomocysteinemia

promotes the growth of vascular smooth muscle
[279, 291, 316±320] and other cells in the aortic

wall [236]. Although diverging results have been

obtained [292], Hcy may provoke this effect by
induction of cyclin A gene expression [316],

enhancement of platelet derived growth factor

[318], or stimulation of protein kinase C activation
[321]. In addition, Hcy promotes the production of

collagen [317, 320], which may account for the

intimal hyperplasia in patients with homocystinuria
[3]. The fragmentation of the internal elastic lamina

observed in these patients [3, 322] may be related
to serine elastase induction by Hcy [322].

Platelet aggregation. Some in vitro [266] and in vivo

[279, 280, 282, 308, 323] experiments indicate
that Hcy enhances platelet aggregation. This is also

supported by the finding of an increased thrombox-
ane biosynthesis amongst patients with homocysti-

nuria [324, 325] and in hyperhomocysteinemic

rats [308], which is believed to reflect in vivo platelet

activation. However, results from several other

studies argue against enhanced platelet aggregation

in hyperhomocysteinemia [265, 325±327].

Miscellaneous mechanisms. Other mechanisms

linking elevated tHcy with CVD or thrombosis

include activation of coagulation factor XII [328],
enhanced binding of lipoprotein(a) to fibrin [329],

stimulation of the macrophage tissue factor activity

[308, 323], and impaired anticoagulant pathway
as indicated by elevated levels of prothrombin

fragments [330].

Validity and clinical relevance of the suggested
mechanisms. The validity and clinical relevance
of the different observations have been questioned.

Most experiments were carried out with one

particular chemical form of Hcy and do not reflect
the complex redox reactions or interconversion of

the different Hcy species in blood [24]. In addition,

millimolar concentrations were often applied, which
is more than 100-fold higher than observed in

moderate hyperhomocysteinemia [331]. This may

also explain why many in vitro observations have
not been reproduced in vivo [6, 286]. Finally, often

the effects provoked by high Hcy are not specific

since they can be obtained with other thiols [286,
306, 332].

Is homocysteine causally related to CVD?

A critical question is whether elevated tHcy is a

cause of CVD or just an epiphenomenon. The
evidence supporting a causal relationship as well

as that disputing it, will therefore be critically

reviewed.

Observational clinical and epidemiological evidence

The belief that Hcy may be an atherothrombotic

agent was originally derived from the clinical

presentation of patients with homocystinuria [3,
6, 8]. The assumption is supported by an extensive

series of cross-sectional or case-control studies

almost consistently demonstrating a higher risk of
CVD amongst subjects with moderate tHcy eleva-

tions [13, 55, 57, 186, 187, 189±191, 193±
200]. In addition, elevated tHcy potentiates the risk

conferred by other risk factors such as hypertension

[55, 333] and smoking [55].
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Prospective studies. The most reliable epidemiolo-
gical evidence originates from prospective studies

because samples for tHcy determination are col-

lected before disease occurrence. Presently, when
investigations with mortality as endpoint are in-

cluded, results from at least 24 prospective studies

have been reported (Table 2). Sixteen of the studies
are based primarily on healthy subjects, including

five from the Physicians' Health Study and two from

the British Regional Heart Study. All the community
or occupational cohort studies have used a nested

case-control design, which rely upon the quality of
tHcy determinations in frozen samples. This ap-

proach is probably appropriate [23, 40±42]. The

tHcy level was significantly related to subsequent
CVD or mortality in nine of the studies [188, 203,

204, 206, 207, 214, 215, 222, 334], non-

significantly related in three studies [42, 335,
336], whereas no association was observed in the

remaining four [194, 337±339].

In eight of the prospective studies, patients with
systemic lupus erythematosus, renal disease or

various types of CVD were followed, and tHcy

significantly predicted the prognosis [32, 208,
212±214, 340, 341] or progression of athero-

sclerosis [202] in all these investigations. The

stronger predictive power of tHcy in clinical cohorts,
compared to the community-based studies may be

due to a shorter follow up. In the Physicians' Health

Study, the tHcy relation with myocardial infarction

was attenuated when follow up was extended from 5

[203] to 9 years [336]. The five studies from this
cohort of US physicians included men who pre-

sumably are better nourished and with better

vitamin status than the general population [336].
This may impede the detection of any tHcy-

associated risk. Estimates of the reliability constant

of tHcy suggest that the magnitude of the risk
associations may be underestimated by more than

10% when they are based on a single individual

tHcy determination [44, 45, 342].

Dose±response. A strong dose±response relation-

ship between tHcy and mortality was observed in

our patient cohort [32] (Fig. 6, left panel). The tHcy-
associated risk was slightly strengthened with

cardiovascular mortality as endpoint in this study.

We noticed a particularly strong mortality relation
at tHcy levels above 15 mmol L21, but the relation-

ship at lower tHcy was similar to that observed in

the meta-analyses by Boushey et al. [187] and Wald
et al. [188].

The association between tHcy and CVD or
mortality cannot be used to determine the benefits

that might be derived from tHcy intervention trials.

However, the data can be used in the design of such
studies, and we have calculated the hypothetical

mortality reduction associated with a decrease in
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Fig. 6 Dose±response relation

between plasma total homocysteine
(tHcy) and mortality. The left panel

shows the dose±response

relationship between plasma tHcy

and mortality adjusted for age, sex,
left ventricular ejection fraction,

creatinine, total cholesterol, and

presence of single, double or triple

vessel disease, using generalized
additive logistic regression. Relative

mortality was approximated by the

odds ratio. The solid line indicates

the estimated dose±response curve
and the shaded area the 95%

confidence interval. Based on the

dose±response relationship of the
left panel, the right panel shows the

estimated potential reduction in

mortality associated with a

reduction in tHcy of 15 and 30%.
The Initial plasma tHcy refers to the

tHcy level before the hypothetical

reduction.
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tHcy if all the associated effects can be reversed by

tHcy lowering (Fig. 6, right panel). Although highly

speculative, and likely to exaggerate any effect of
tHcy lowering, the calculation shows that a

moderate reduction in tHcy may be associated with

a substantial mortality reduction even amongst
patients with tHcy ,15 mmol L21, further suggest-

ing that the entire CAD population may benefit from

tHcy lowering therapy.

Vitamin intake and tHcy lowering therapy

Observational studies have shown that high intakes

of fruit and vegetables, the major sources of folates

[344], are associated with lower rates of stroke and
coronary heart disease [345]. A protective effect on

CVD from folate or vitamin B6 is also supported by

recent observational prospective studies [339, 346,
347].

A strong evidence of a beneficial effect related to

increased vitamin intake is provided by clinical
observations amongst patients with homocystinuria

due to cystathionine b-synthase deficiency. In these

patients, the cardiovascular morbidity is markedly
reduced in those responding to Hcy lowering

therapy with vitamin B6 [6]. This effect is achieved

even though tHcy is not normalized. Betaine seems
to have a similar protective effect in vitamin B6-

nonresponsive patients [58, 348].

Amongst patients with mild to moderate hyper-
homocysteinemia, the data on the effect of tHcy

lowering therapy are sparse. One study on non-

randomized patients recently showed that a combi-
nation regimen of folic acid, vitamins B6 and B12

reduced the progression of carotid atherosclerosis

[349]. In another study of patients with premature
peripheral arterial occlusive disease, the patients

with initial hyperhomocysteinemia were treated
with vitamins B6 and folic acid and tended to have

a lower incidence of new cardiovascular events than

patients with normal tHcy levels [341].

CVD and genetic causes of mildly elevated tHcy

Recent studies [338, 339] have added to the
ongoing debate of whether Hcy itself is a cause of

occlusive vascular disease or just an epiphenomenon
[89, 350]. In this paragraph we discuss how

genetic causes of hyperhomocysteinemia may com-

plement the discussion of whether tHcy is a causal

factor for CVD, just a marker of risk, or a

combination of the two.

If mild hyperhomocysteinemia itself is responsible
for vascular injury, genetic causes of mildly elevated

(fasting or postload) tHcy are candidate CVD risk

factors. There is no increased risk of CVD in
obligatory heterozygote homocystinuria due to CBS

deficiency [351], and the prevalence of common

mutations in the CBS gene in CVD patients with an
abnormal response to methionine is not higher than

expected [352±355]. However, heterozygosity for

the CBS mutations is rare, and a majority of these
subjects have a normal fasting tHcy level, and often

normal postload tHcy [6].

The CVD risk associated with the common C677T
MTHFR polymorphism has, since 1995, been

extensively studied. In this review, we have ex-

tended a published metaanalysis [356] on the
C677T MTHFR polymorphism, plasma tHcy con-

centration and CVD risk, by including the most

recent articles.
Based on 17 studies of European and North

American populations, we found that subjects with

the TT genotype (n = 614) have on average
3.5 mmol L21 (32%) higher mean plasma tHcy

concentration than those with the CC genotype

(n = 2491; Table 3). This difference in tHcy con-
centration between the TT and CC genotypes is

larger than the difference usually found between
CVD patients and control subjects (see Table 2 for

comparison). In 28 studies, comprising 6944

cardiovascular patient and 7764 control subjects,
the TT genotype is found in 12.5% of the patients

and 11.9% of the control subjects (Table 4), giving

an odds ratio for CVD of 1.15 (95% CI 0.97±1.38),
which is not significant. Interestingly, subgroup

analysis of three Japanese studies [372, 379, 386],

including 826 CVD patients and 1289 control
subjects, shows a significantly increased risk for

CVD in those with the TT genotype (OR 2.04, 95%

CI 1.55±2.68).
The available data on MTHFR and CVD risk,

summarized above, do not suggest a link between

mild fasting hyperhomocysteinemia, mediated
through the TT genotype, and CVD, at least not in

European, North American, and Australian popula-

tions. However, there are several reasons why high
tHcy may still confer CVD risk whilst MTHFR is not a

major risk factor. First, the TT genotype may protect

against CVD by mechanisms independent of Hcy, as

4 4 0 O . N Y G AÊ R D et al.

# 1999 Blackwell Science Ltd Journal of Internal Medicine 246: 425±454



suggested by lower blood pressure in TT subjects
[388]. Secondly, high tHcy may cause vascular

lesion only in subjects with coexisting risk factors,
and such interactive effects have actually been

demonstrated in the COMAC study [55]. Interac-

tions of the MTHFR C677T polymorphism with
nutrition [389] and genetic traits seem likely and

may explain the association found in the Japanese.

The interactions between the MTHFR genotype
and conventional risk factors have been addressed in

a recent study from the European Concerted Action

Project based on genotyping and tHcy measurement
in 711 cases and 747 controls. The TT genotype

was associated with 3.5 mmol L21 higher tHcy and

a 26% higher CVD risk than the CC genotype. The
unexpected finding was made in the hyperhomo-

cysteinemic subgroup (tHcy .15 mmol L21); TT

subjects had a lower prevalence of CVD risk factors
than CC subjects. After adjustment for these risk

factors, the TT genotype was significantly associated

with a 50% increased risk for overall CVD and an
even higher risk for CAD, compared with the CC

genotype. The increase in risk was markedly

attenuated after adjustment for tHcy (Meleady et al.

1998, submitted). This suggests that the TT
associated risk is mediated through elevated tHcy.

Furthermore, the unadjusted relative risk associated
with the TT genotype agrees with what has been

calculated (20±40%) for a tHcy increment of

3.5 mmol L21 [187], and the adjusted relative risk
observed in the COMAC study actually exceeds this

expected relative risk. Statistical sample size calcula-

tions show that at least 2500 patients and an equal
number of controls are required to detect an

unadjusted 25% risk increase associated with TT

genotype, if the prevalence of the genotype is about
10%.

Conclusions

Observational studies show that plasma tHcy is a

strong risk factor for CVD and mortality, and genetic
causes of mildly elevated tHcy may be associated

with increased risk of CVD when other risk factors
are accounted for. However, mechanisms are

uncertain and results from adequately sized trials

with tHcy lowering therapy and clinical endpoints
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Table 3 Plasma total homocysteine (tHcy) concentration in 17 different studies in relation to the C677T/MTHFR genotypes (TT

genotype = mutant homozygotes, CT genotype = mutant heterozygotes, CC genotype = normal homozygotes)

Mean plasma tHcy concentration in mmol L21

Author [reference], year TT genotype (n) CT genotype (n) CC genotype (n)

Frosst et al. [357], 1995 22.4 (12) 13.8 (9) 12.6 (19)
van der Put et al. [358], 1995 17.1 (34) 13.2 (164) 13.4 (194)

Jacques et al. [80], 1996 9.9 (45) 8.4 (170) 8.7 (150)

Harmon et al. [359], 1996 9.5 (72) 7.1 (273) 6.8 (280)

Kluijtmans et al. [352], 1996 16.3 (15) 13.4 (61) 12.3 (93)
Schmitz et al. [360], 1996 9.1 (14) 10.6 (46) 9.9 (67)

Ma et al. [361], 1996 12.6 (72) 10.9 (240) 10.6 (271)

Deloughery et al. [362], 1996 17.2 (22) 13.6 (111) 13.0 (114)

Verhoef et al. [363], 1997 15.5 (30) 12.3 (150) 11.4 (138)
Kluijtmans et al. [364], 1997 15.4 (51) 13.4 (233) 12.6 (231)

Christensen et al. [365], 1997 12.8 (22) 11.0 (98) 10.3 (89)

Schwartz et al. [366], 1997 13.5 (43) 10.8 (141) 10.9 (154)
Kluijtmans et al. [243], 1998 17.7 (51) 13.3 (229) 12.6 (258)

Legnani et al. [367], 1997 13.0 (12) 7.8 (31) 7.4 (20)

Arai et al. [368], 1997 19.8 (22) 15.5 (22) 15.4 (22)

Gudnason et al. [85], 1998 16.5 (88) 10.4 (338) 9.9 (359)

Lalouschek et al. [369], 1998 10.4 (9) 9.8 (35) 9.4 (32)

Approximate means of all studies 14.3 (614) 11.1 (2351) 10.8 (2491)
Elevation in tHcy compared

with the CC genotype

3.5 (32%) 0.3 (3%)



do not exist. Because elevated tHcy may be just a
marker of individuals at high risk, a preventive

action with B-vitamin supplementation in the

general population or in the general CVD population
is not justifiable until the results of intervention

trials with tHcy lowering therapy are available.
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